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SF6 has long served as the epitome for an inert molecular gas.
Typical of descriptions one finds in standard texts are the follow-
ing: “extremely inert”,1 “extraordinary stability”,2 “chemically very
inert”,3 “extreme thermal and chemical stability,” and “possibly
the most inert non-ionic fluorine compound”.4 Due to its inertness
and high dielectric constant, SF6 has found widespread application
in high voltage transformers, as an inert gas to blanket molten
magnesium, as a noise insulator in multipane windows, and
previously even in some shoes.5 Inevitably, much of this SF6 finds
its way into the atmosphere, which is problematic because it is a
potent greenhouse gas,6 having the highest global warming potential
known (estimated at more than 22 000 times that of CO2), in large
part due to its estimated lifetime of 3200 years in the atmosphere.
As a result, SF6 is one of the gases falling under the Kyoto protocol.7

While SF6 does react readily with ketyl solutions and the like3,8

and has also been employed as a thermal electron scavenger,9 it
clearly may not be considered to have been established as a useful
reagent.10 Herein we wish to report that, with low valent organo-
metallic compounds, SF6 can not only be quite reactive at and even
below room temperature, serving as a useful and selective fluorinat-
ing agent, but also quite surprisingly, its reactivities can rival or
exceed those of some commonly employed fluorinating agents.

Initial attempts to prepare higher valent (pentadienyl)zirconium
fluorides focused on analogues of recently isolated chloride,
bromide, and iodide complexes such as the Zr(6,6-dmch)2X2

11 and
Zr(C5H5)(6,6-dmch)X2

12 compounds (6,6-dmch) 6,6-dimethyl-
cyclohexadienyl). It was first observed that the Zr(II) starting
materials Zr(6,6-dmch)2(PMe3)2 and Zr(C5H5)(6,6-dmch)(PMe3)2

were able to activate C-F bonds, as has been demonstrated for
early metallocenes,13 presumably leading to compounds of interest.
However, the reactions yielded products that were quite insoluble,
perhaps a result of the notably weaker binding of pentadienyl
ligands to metals in relatively high (g+4) oxidation states.11,12,14

In such situations, these ligands exhibit a marked tendency to form
only one short contact with the dienyl fragment through the central
(C(3)) carbon atom, likely a result of a size mismatch between the
wide pentadienyl fragments and the contracted metal orbitals. The
C(2,4) and C(1,5) atoms then become located progressively further
from the metal center, and these weak interactions could promote
extensive bridging by any fluoride ligands. As the reactions tended
to be somewhat slow and yielded insoluble products, alternative
fluorinating agents were considered, including SF6. Indeed, reactions
of some of the Zr(II) starting materials with SF6 were found to be
rapid at and even below room temperature, leading to very warm
reaction solutions, but again the metal-containing products exhibited
very low solubilities.

To favor the formation of a more soluble complex, resort was
made to alkylated starting materials. The “half-open titanocene”
Ti[1,3-C5H3(t-C4H9)2](6,6-dmch)(PMe3) was readily prepared and
characterized (Figure 1). As is typical of other divalent half-open
titanocenes,15 the Ti-C distances for the electronically open

pentadienyl ligand were found on the average to be substantially
shorter than those for the cyclopentadienyl ligand, in this case the
averages being 2.263 and 2.387 Å. This species was subjected to
reactions with SF6, which again proceeded quite readily, yielding
a bright green product. Subsequent characterization revealed the
product to be{Ti[1,3-C5H3(t-C4H9)2]F2}4 (Figure 2). The tetrameric
arrangement of this complex appears quite new for at least group
IV organometallic complexes16 and is based on a tetragonally
distorted cube of fluoride ions, with Ti[1,3-C5H3(t-C4H9)2] units
situated above four of the cube faces, with the other two (opposite)
faces empty (Figure 2). The average Ti-C and Ti-F bond distances

Figure 1. Perspective view of Ti[1,3-(t-Bu)2C5H3](6,6-dmch)(PMe3).

Figure 2. Perspective view of{Ti[1,3-(t-Bu)2C5H3]F2}4. The complex lies
on a crystallographic center of inversion.
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are 2.362 and 2.017 Å, respectively, and the Ti-F vectors are bent
down from the cyclopentadienyl ligand centroids by an average of
118.1°. The Ti-F bonds are substantially shorter than those of ca.
2.10 Å observed in bis(cyclopentadienyl)titanium(III) fluorides.17

That the product is a Ti(III) complex, presumably formed via loss
of its pentadienyl ligand from a Ti(IV) intermediate, was not
surprising in view of the strong preference of pentadienyl ligands
for metals in lower oxidation states.11,14a,18

The high reactivity observed between SF6 and low valent
organometallic compounds of titanium and zirconium is particularly
notable given that under the same conditions, XeF2 or CoF3 required
substantially longer times for their reactions. It is likely that the
SF6 reactions occur via coordination of one or more of the fluorine
atoms to the transition metal center, followed by the transfer of
the fluorine atom(s), resulting in the oxidation of the metal center,
in what may be described alternatively as an inner-sphere electron
transfer, or simply as an atom abstraction. In either case, the
replacement of S-F bonds by much stronger M-F bonds provides
a substantial driving force for these reactions. The results reported
herein open up the potential for the utilization of SF6 as a safe
fluorinating source, especially for the selective preparation of new
organometallic fluoride complexes,19 which have been shown to
have unique reactivities.21 Although one could be concerned that
the formation of highly toxic SF4 as a byproduct could pose a
hazard, the fact that substantial quantities of Me3PS are observed
even when large excesses of SF6 are employed demonstrates that
the lower sulfur fluorides are, as expected, far more reactive than
SF6. Thus, all the fluorine atoms on sulfur can be effectively utilized,
which is not only economical but should also allow for any hazards
to be minimized.
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